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Abstract
We investigate the effect of T-duality on non-commutativity. Starting with
open strings ending on a D2-brane wrapped on a T 2 torus in the presence of a
Kalb–Ramond field, we consider Buscher transformations on the coordinates
and background. We find that the dual system is commutative. We also study
alternative transformations that can preserve non-commutativity.

PACS numbers: 11.25.−w, 11.25.Uv

1. Introduction

T-duality [1–3] is one of the most interesting symmetries of string theory since it relates
small-scale physics to large-scale physics. When one target space dimension is compact, the
strings do not distinguish whether the compactification radius is R or α′/R and both possible
worlds are related by T-duality. If d space coordinates are compactified in a torus T d , there
are several T-duality transformations associated with the conformal symmetries of the torus.
These transformations act on the torus metric gij and also on the winding and momentum
numbers of the compact coordinates in such a way that the Hamiltonian is preserved.

In the absence of an antisymmetric Kalb–Ramond field Bij , some T-duality
transformations can be realized as simple transformations of the string coordinates. If this field
is turned on, considering the standard T-dualization procedure, the metric gij and coordinates
Xi have a non-trivial transformation.

In the context of open string theory, the Kalb–Ramond field plays a crucial role because
it may lead to non-commutativity at the string endpoints [4–7]. It is interesting to ask whether
this non-commutativity is preserved or not after a T-duality transformation. A very important
discussion of this problem can be found in [7], where open string background parameters
were introduced. Another possible approach would be to analyze the effect of T-duality on
the boundary conditions. D-branes on a non-commutative torus were studied in [8]. See also
[9–12] for discussions of T-duality and non-commutativity.
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The aim of this paper is to investigate the effect of T-duality transformation for open strings
in non-commutativity. We consider as our primal system a D2-brane which wraps a T 2-torus in
the presence of a constant Kalb–Ramond field with spatial components (magnetic field). This is
a non-commutative system. We perform T-duality by considering background and coordinate
transformations of the form proposed by Buscher [13]. Analyzing not only the background but
also the boundary conditions, we find that the dual system has a commutative character. We
discuss this result and the fact that the dual target space still allows non-commutativity, if one
starts with different primal systems. Another discussion of non-commutativity and T-duality,
for the case of a background electric field, can be found in [14].

Inspired in the case of a zero Kalb–Ramond field, we also consider an alternative
transformation consisting of the interchange of the τ and σ derivatives. When applied to
two coordinates, this transformation generates a dual D2-brane with a nonzero Kalb–Ramond
field, preserving non-commutativity. We show that this transformation is a symmetry of the
Hamiltonian but violates the condition that winding and momentum modes must be an integer
for closed strings so it is not a T-duality.

We begin with a discussion, in section 2, of non-commutativity on a T 2 torus with the
Kalb–Ramond background. Next, in section 3, we make a general discussion of T-duality
in terms of transformations involving the background fields and the winding and momentum
numbers, and then zoom in on the case in point: the D2-brane. In section 4, we study T-duality
for the open string coordinates considering separately the Buscher dualization of one or two
coordinates along the D2-brane. We also discuss the alternative transformation for these cases.
The commutative/non-commutative character of the dual theories obtained is discussed. We
follow through with the conclusions.

2. D2-brane in a torus with a constant Kalb–Ramond field: open strings
non-commutativity

Consider a torus T 2 formed by two compact angular coordinates

Xi ∼ Xi + 2π (1)

with i = 1, 2. Using these angular coordinates the radii of the torus are inserted in the
metric. We denote the non-compact coordinates as XI with I �= 1, 2. For simplicity, the only
non-vanishing component of our Kalb–Ramond B field will be B12 = −B21 =: B where B is
a constant. The toroidal contribution to the worldsheet action of an open string propagating
in the presence of Bij can be written as

S = 1

4π

∫
dτ dσ [−hαβgij ∂αXi∂βXj + εαβBij ∂αXi∂βXj ], (2)

where hαβ = diag(−, +) and metric gij is diagonal, with elements R2
i

/
α′, where Ri are the

radii of the torus (i = 1, 2). The equations of motion are

Ẍi − X′′i = 0 i = 1, 2, (3)

where Ẋi := ∂τX
i and X′i := ∂σXi . The action of equation (2) differs from the free open

string case by the Kalb–Ramond term which is a surface term that modifies the boundary
conditions (BCs):

δXi(gijX
′j + Bij Ẋ

j )|σ=π
σ=0 = 0 (4)

and, consequently, the commutation relations [Xi(τ, σ ),Xj (τ, σ ′)] at the string endpoints, as
we shall see. We will choose Dirichlet conditions for the non-compact coordinates XI .

From equation (4), we see that we have two possible BCs for the open string coordinates
X1 and X2 at the endpoints:
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(i) Dirichlet conditions: δXi = 0, or
(ii) Mixed conditions: gijX

′j + Bij Ẋ
j = 0.

The D2-brane corresponds to choosing mixed conditions for both X1 and X2 at σ = 0, π :

g11X
′1 + BẊ2 = 0, g22X

′2 − BẊ1 = 0. (5)

The solutions for string coordinates X1 and X2 satisfying the equations of motion and
mixed boundary conditions have the following form:

X1(τ, σ ) = x1 + w1τ − B
g11

w2σ +
i

n
α−

n (τ ) cos nσ − 1

n

B
g11

β+
n (τ ) sin nσ (6)

X2(τ, σ ) = x2 + w2τ +
B
g22

w1σ +
i

n
β−

n (τ ) cos nσ +
1

n

B
g22

α+
n(τ ) sin nσ, (7)

where we have introduced the oscillator terms α±
n (τ ) := αn(τ)± ᾱn(τ ) with αn(τ) := αn e−inτ

and ᾱn(τ ) := ᾱn einτ and the same definitions for β. A sum over n > 0 is implicit (see [6, 15]
for a similar expansion).

The conjugate momenta are

P 1(τ, σ ) = 1

2π

M
g22

(
w1 + α+

n cos nσ
)

(8)

P 2(τ, σ ) = 1

2π

M
g11

(
w2 + β+

n cos nσ
)
, (9)

(where M := g11g22 + B2), and the Hamiltonian can be written as

H(τ) = π

2
M

[
w2

1

g22
+

w2
2

g11
+

1

g22
(αnᾱn + ᾱnαn) +

1

g11
(βnβ̄n + β̄nβn)

]
. (10)

We are interested in commutators [Xi(τ, σ ),Xj (τ, σ ′)], [Xi(τ, σ ), P j (τ, σ ′)], [P i(τ, σ ),

P j (τ, σ ′)]. It is well known [4–7] that the canonical ones are inconsistent with the new
boundary conditions (5) brought about by the Bij field. The simplest way of obtaining the
appropriate commutators is by means of the Heisenberg equations. Comparing the series
expansion for commutator [Xi(τ, σ ),H(τ)] with the expansion of Ẋi(τ, σ ), we obtain the
commutation relations for the modes (see the appendix)

[x1, w1] = g22

πM
, [x2, w2] = g11

πM
,

[αn, ᾱm] = −in
g22

πM
δmn, [βn, β̄m] = −in

g11

πM
δmn,

(11)

which we then use to arrive at the desired commutators

[P i(σ ), P j (σ ′)] = 0 (12)

[Xi(σ ), P j (σ ′)] = δij δN(σ − σ ′) := 1

π
(1 + 2 cos nσ cos nσ ′) (13)

[Xi(σ ),Xj (σ ′)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 < σ, σ ′ < π

−Bij

M
, σ = σ ′ = 0

Bij

M
, σ = σ ′ = π

. (14)

So in the end, we are left with a non-commutative theory. Note that for Bij = 0, we
recover the canonical commutators.

3



J. Phys. A: Math. Theor. 42 (2009) 315201 C A Ballon Bayona et al

3. T-duality

T-duality appears as a symmetry of closed strings when d coordinates of the spacetime are
compactified on a torus T d :

Xi ∼ Xi + 2πmi (15)

with mi being the integer numbers (i = 1, . . . , d). The radii of the torus are included in the
metric. We consider in this paper the case d = 2.

The toroidal contribution to the worldsheet action of a closed string propagating in the
presence of a constant Kalb–Ramond field is the same as equation (2). The difference is that
instead of boundary conditions we have periodicity of the closed string coordinates

Xi(τ, σ + 2π) = Xi(τ, σ ) + 2πmi. (16)

The conjugate momenta are

Pi = 1

2π
(gij Ẋ

j + BijX
′j ). (17)

The periodicity of Xi leads to a discretization of the center of mass momenta

pi =
∫ 2π

0
dσPi = ni, (18)

with niεZZ.
The Hamiltonian corresponding to action (2) can be written as [3]

H = 1

4π

∫
dσ [(2π)2Pig

ijPj + X′i (g − Bg−1B)ijX
′j + 4πX′iBikg

kjPj ]

= 1

4π

∫
dσ

(
P 2

L + P 2
R

)
, (19)

where P 2
L = PLaPLa and P 2

R = PRaPRa with

PLa = 1√
2
[2πPi + (g − B)ijX

′j ]e∗i
a = 1√

2
gij (Ẋ

j + X′j )e∗i
a

PRa = 1√
2
[2πPi − (g + B)ijX

′j ]e∗i
a = 1√

2
gij (Ẋ

j − X′j )e∗i
a .

(20)

These momenta correspond to the coordinates X
a = ea

iX
i with the zweibeins defined by

ei
aej

a = gij ; ei
ae∗j

a = δ
j

i ; e∗i
a e∗j

a = gij . (21)

The zero-mode parts of the momenta are

pLa = 1√
2
e∗i
a [ni + (g − B)ijmj ]

pRa = 1√
2
e∗i
a [ni − (g + B)ijmj ],

(22)

where ni and mj are the integer numbers defined in equations (16) and (18). It is convenient
to write this equation in the matricial form

p :=
(

pL

pR

)
= 1√

2

(
e∗(g − B) e∗

−e∗(g + B) e∗

) (
m

n

)
=: V Z, (23)

where Z = (mi, nj ) is a 4-vector composed by the winding and momentum numbers of
coordinates X1 and X2 which are integer numbers for closed strings. Using this equation we
can express the Hamiltonian as

H = 1
2

(
p2

L + p2
R

)
+ N + Ñ = 1

2ZtMZ + N + Ñ, (24)
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where N and Ñ are the number operators for the oscillator modes and M is the 4 × 4 matrix

M = V tV =
(

g − Bg−1B Bg−1

−g−1B g−1

)
. (25)

The closed string theory has to satisfy the Virasoro constraint

L0 − L̃0 = 1
2

(
αa

0αa
0 − α̃a

0 α̃a
0

)
+ N − Ñ = − 1

2

(
p2

L − p2
R

)
+ N − Ñ = 0, (26)

where αa
0 and α̃a

0 are the zero modes of right and left sectors of the coordinates X
a
. Note that

Xi are angular coordinates of the torus while X
a

are the usual string coordinates expressed in
string units. The Virasoro constraint can be written as

N − Ñ = 1
2

(
p2

L − p2
R

) = 1
2ZtJZ, (27)

where J is the 4 × 4 matrix

J =
(

0 I2

I2 0

)
, (28)

with I2 being a 2 × 2 identity matrix.
T-duality is a transformation of the string state and of the background that preserves the

Hamiltonian (24) and the Virasoro constraint (27). This transformation acts on matrix M as

M → T MT t , (29)

with

T =
(

a b

c d

)
, (30)

where a, b, c, d are 2 × 2 matrices. The invariance of the Virasoro constraint corresponds to
the condition

T JT t = J. (31)

The Hamiltonian is preserved if vector Z transforms as Z → (T t )−1Z under T-duality
while number operators N, Ñ remain unchanged. Note that for closed strings, the elements
of vector Z must remain integers after this transformation. The transformation of matrix M
corresponds to a change in the background g and B that can be expressed as [3]

E := g + B → Edual = gdual + Bdual = (aE + b) · (cE + d)−1. (32)

We are interested in particular cases of T-dualities that can be interpreted in terms of
dualization of the string coordinates. First, we consider a transformation matrix of the
following form:

TXi =
(

1 − tXi tXi

tXi 1 − tXi

)
, (33)

with

tX1 =
(

1 0
0 0

)
; tX2 =

(
0 0
0 1

)
. (34)

The effect of transformation TXi = (TXi )t = ((TXi )t )−1 on vector Z is simply to
interchange the winding number and the momentum number of the corresponding coordinate:
mi ↔ ni .

We now describe the effect of this transformation on the momenta. Let us choose
coordinate i = 2. In this case, we have

gdual =
( M

g22

B
g22

B
g22

1
g22

)
; Bdual =

(
0 0
0 0

)
(35)

5
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with M := g11g22 + B2 = det E. The corresponding transformed zweibeins are

edual =
(√

g11
B√
g22

0 1√
g22

)
; e∗dual =

(
1√
g11

− B√
g11

0
√

g22

)
. (36)

Using these results and equation (23), we can find the transformation of momentum vector
p = (pL, pR):

pdual =

⎛
⎜⎜⎜⎜⎝

p1
L

p2
L

p1
R

p2
R

⎞
⎟⎟⎟⎟⎠

dual

=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

p1
L

p2
L

p1
R

p2
R

⎞
⎟⎟⎟⎟⎠ =: UX2p. (37)

So we see that the T-duality transformation TX2 reverses the sign of the momentum component
p2

R while preserving the sign of the other momentum components. We have introduced matrix
U that represents the T-dualization of the momentum vector.

Now let us consider the case of simultaneously interchanging the winding numbers m1,m2

and the momentum numbers n1, n2. This is done by matrix

TX1X2 =
(

0 I2

I2 0

)
(38)

(note that TX1X2 = TX1 + TX2 ). The transformed fields are

gdual = 1

M

(
g22 0
0 g11

)
; Bdual = 1

M

(
0 −B
B 0

)
, (39)

with the corresponding zweibeins

edual = 1√
M

(√
g22 0
0

√
g11

)
; e∗dual =

√
M

(
1√
g22

0

0 1√
g11

)
. (40)

The transformation (38) in fact inverts the background matrix E → 1/E. The momentum
vector transforms as

pdual =

⎛
⎜⎜⎝

p1
L

p2
L

p1
R

p2
R

⎞
⎟⎟⎠

dual

= 1√
M

⎛
⎜⎜⎝

√
g11g22 B 0 0
−B √

g11g22 0 0
0 0 −√

g11g22 B
0 0 −B −√

g11g22

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

p1
L

p2
L

p1
R

p2
R

⎞
⎟⎟⎠ =: UX1X2p. (41)

This transformation is not as simple as that obtained in equation (37).
In the following section, we discuss concrete realizations for the T-dualities of

equations (37) and (41). Before that it is useful to see how the open string parameters
defined by Seiberg and Witten change under T-duality. For open strings ending on the D2-
brane with mixed boundary conditions: gijX

′j + Bij Ẋ
j = 0, the coordinate propagator at

string endpoints can be decomposed in terms of the parameters [7]

Gij =
(

1

E

)ij

sym

, θ ij =
(

1

E

)ij

ant

, (42)

6
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where sym(ant) means the symmetric (anti-symmetric) part. The equal time commutator is
directly related to parameter θ :

[Xi(τ, σ = 0),Xj (τ, σ ′ = 0)] = −2πθij . (43)

So, in principle, studying the transformation of Gij and θ ij after T-duality we can find
out the propagator and commutator of the T-dual world.

The TX2 duality transformed open string parameters are

Gdual =
(

1

Edual

)
sym

= 1

g11

(
1 −B

−B M

)
, θdual =

(
1

Edual

)
ant

= 0, (44)

so we should expect a commutative dual theory. For the TX1X2 duality we find

Gdual =
(

g11 0
0 g22

)
= g, θdual =

(
0 B

−B 0

)
= B, (45)

indicating a possible non-commutative dual theory. We will see in the following section
that, although the dual θ ij is different from zero, the TX1X2 transformation of the open string
coordinates is such that a non-commutative primal system turns into a commutative one.

4. Duality transformations of open string coordinates

From now on, we take a coordinate-focused approach to T-duality. That is, we will be
speaking of ‘dualizing’ the fields Xi(τ, σ ), though still keeping in mind that T-duality is a
symmetry of the Hamiltonian, and acts upon the momenta. This will enable us to assess the
commutative/non-commutative character of the theories connected by T-duality.

We will discuss here two possible ways of dualizing the string coordinates in the presence
of a constant Kalb–Ramond field. The first one is the T-duality mechanism that consists
in introducing a Lagrange multiplier in the action which is eventually identified with the
dual coordinate(s). By rewriting the action in terms of the dual coordinate, we get the
transformations for the background. This approach was developed by Buscher [13].

The other mechanism is an extrapolation of the B = 0 T-duality prescription: we simply
interchange the τ and σ derivatives of the coordinate(s) Xi to be dualized. This corresponds
to inverting the sign of the right component of the string coordinates

(
Xi

R → −Xi
R

)
. As we

shall see, although this alternative mechanism preserves the Hamiltonian and the Virasoro
constraint in the same way as T-duality, they are not equivalent.

We consider two cases:

A. Dualizing one coordinate: X2,
B. Dualizing both coordinates X1 and X2.

To each case, we apply both mechanisms mentioned above.
We start from a D2-brane with a constant Kalb–Ramond field wrapping the torus. This

primal system is non-commutative, as discussed in section 2, as a consequence of the mixed
boundary conditions at the string endpoints:

g11X
′1 + BẊ2 = 0, g22X

′2 − BẊ1 = 0. (46)

Other interesting consequence of these BCs is that the ‘winding’ and momentum numbers
of open string coordinates X1 and X2 are now related:

m1 = − B
M

n2m2 = B
M

n1, (47)

so the primal ‘winding’ numbers are not integer numbers, unlike the closed string case.
In the following subsections, we will discuss the dualization of open string coordinates,

backgrounds and boundary conditions and study its effect on non-commutativity.

7



J. Phys. A: Math. Theor. 42 (2009) 315201 C A Ballon Bayona et al

4.1. Dualizing one coordinate

4.1.1. T-duality transformation. Let us begin by defining the worldsheet vector

v2
α := ∂αX2, (48)

where α = τ, σ . Action (2) becomes

S = 1

4π

∫
dτ dσ

[−√
hhαβ

(
g11∂αX1∂βX1 + g22v

2
αv2

β

)
+ 2εαβB∂αX1v2

β

]
. (49)

Now we add the (vanishing) Lagrange multiplier:

S → S − 1

2π

∫
dτ dσεαβ∂αX2

Sv
2
β. (50)

If we vary this action with respect to the new coordinate X2
S , we recover the primal action (2)

when using (48). If, instead, we vary with respect to v2
α , we find the following equation of

motion:

v2
α = − 1

g22
εβ
α ∂β

[
X2

S + BX1
]
. (51)

Substituting this equation into (50) we find the ‘dual’ action,

SS = 1

4π

∫
dτ dσ

[−hαβgS
ij ∂αXi

S∂βX
j

S + εαβBS
ij ∂αXi

S∂βX
j

S

]
, (52)

where dual fields gS
ij and BS

ij are precisely the same found in equation (35). Thus, we note
that this coordinate transformation indeed represents a realization of the T-duality studied in
section 3. Note that gS

ij is non-diagonal.
Consistency between equations (48) and (51) yields the relations between the dual

coordinate X2
S(τ, σ ) and the primal one:

Ẋ2
S = g22X

′2 − BẊ1 X′2
S = g22Ẋ

2 − BX′1. (53)

In terms of coordinates X
a = ea

iX
i these transformations read

Ẋ
2

S =
√

gS
22Ẋ

2
S = X

′2 − BẊ
1
, X

′2
S =

√
gS

22X
′2
S = Ẋ

2 − BX
′1
, (54)

whereB := B/
√

g11g22. Note that in the caseB = 0, this T-duality transformation corresponds

to inter-changing the τ and σ derivatives for the X
2

coordinate.
Now we use equations (20), (35) and (53) to check the T-duality transformation of the

momentum vector. We find

PS =

⎛
⎜⎜⎝

P 1
SL

P 2
SL

P 1
SR

P 2
SR

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P 1
L

P 2
L

P 1
R

P 2
R

⎞
⎟⎟⎠ = UX2P. (55)

This result is consistent with the transformation of the zero-mode momentum vector given in
(37) and confirms that the Hamiltonian is preserved.

What about non-commutativity? Using the primal D2-brane boundary conditions (46)
and relations (53), we find the dual boundary conditions

X′1 +
B
M

X′2
S = 0, Ẋ2

S = 0, (56)

so that X2
S satisfies Dirichlet boundary conditions, and the other BC is some kind of rotated

Neumann condition. Hence, our former non-commutativity at the string endpoints is lost,

8
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and we are left with a commutative dual system! This result can be checked by computing
the commutators of the string coordinate operators following a procedure similar to that of
section 2 (but with a zero Kalb–Ramond field and a non-diagonal metric). Below, we will give
a geometrical picture of this T-dual system in terms of a tilted (and non-localized) D1-brane.
For an interesting discussion of this system see [16].

4.1.2. Alternative transformation. Let us now consider the other, more direct means of
producing dual coordinates. Define the alternative dual coordinate X2

A by

Ẋ2
A := g22X

′2, X′2
A := g22Ẋ

2 (57)

and

gA :=
(

g11 0
0 1

g22

)
. (58)

This simple operation leads to the same momentum vector transformation (55). So
the Hamiltonian (19) is preserved. In terms of the planar coordinates X

a = ea
iX

i these
transformations read

Ẋ
2

A =
√

gA
22Ẋ

2
A = X

′2
X

′2
A =

√
gA

22X
′2
A = Ẋ

2
. (59)

Note that for B = 0, these transformations are the same as those given in the standard
mechanism (54).

Using the primal D2-brane boundary conditions and relations (57), we find the dual ones

g11X
′1 +

B
g22

X′2
A = 0, Ẋ2

A − BẊ1 = 0, (60)

for σ = 0, π . These BCs can be rewritten as

X
′1

+ BX
′2
A = 0, Ẋ

2

A − BẊ
1 = 0. (61)

Therefore, X
1

and X
2
A are nothing more than rotations of plain Neumann and Dirichlet

coordinates Y
1

and Y
2

defined by(
Y

1

Y
2

)
:= (M)−1/2

(
1 B

−B 1

)(
X

1

X
2
A

)
(62)

where M := M
g11g22

. Coordinates Y
1

and Y
2

are typical of a D1-brane so our results tell us that
the dual world consists of a non-localized tilted D1-brane (with a zero Kalb–Ramond field)
that corresponds to a commutative dual system. We can construct an action for X2

A of type

SA = 1

4π

∫
dτ dσ

[−√
hhαβgA

ij ∂αXi
A∂βX

j

A + εαβBA
ij ∂αXi

A∂βX
j

A

]
, (63)

with gA
ij given by equation (58). It is straightforward to show that the dual boundary conditions

(60) force us to define BA
ij = 0 which confirms the fact that the dual theory is commutative.

Finally, we can find a connection between the T-duality transformation and the alternative
transformation. Using equations (53) and (57) we get

X2
S = X2

A − BX1, (64)

which relates the dual coordinates X2
S and X2

A. It is straightforward to show that X2
S is

proportional to the Dirichlet coordinate Y 2 transversal to the tilted D1-brane. Using (64)
we can see that the actions SA and SS of equations (52) and (63) are equivalent. These

9
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two mechanisms for the dualization of one coordinate seem to lead to the same dual world.
However, if we calculate the matrix T A

X2 ,

T A
X2 =

⎛
⎜⎜⎝

1 0 0 −B
0 0 0 1
0 0 1 0
0 1 B 0

⎞
⎟⎟⎠ �= T S

X2 = TX2 , (65)

we see that the winding and momentum numbers transform differently from the standard T-
duality. Although we consider open strings, we note that applying T A

X2 to closed strings leads
in general to non-integer momentum and winding numbers. This means that this alternative
transformation is not a T-duality transformation. The particular cases of B having integer
values would be exceptions.

4.2. Dualizing two coordinates

4.2.1. T-duality transformation. Now we introduce two worldsheet vectors

v1
α := ∂αX1, v2

α := ∂αX2. (66)

Then the action analogous to (50) is

S = 1

4π

∫
d2σ

[−√−hhαβ
(
g11v

1
αv1

β + g22v
2
αv2

β

)
+ 2εαβBv1

αv2
β − 2X1

Sε
αβ∂αv1

β − 2X2
Sε

αβ∂αv2
β

]
. (67)

We calculate the equation of motion for each vi
α:

v1
α = g22

M
∂ρ

(
ερ
αX1

S +
B
g22

δρ
αX2

S

)

v2
α = g11

M
∂ρ

(
ερ
αX2

S − B
g11

δρ
αX2

S

)
,

(68)

and substitute back in the action, to obtain the dual action:

SS = 1

2

∫
d2σhαβ

(
gS

11∂X1
S∂βX2

S + gS
22∂X2

S∂βX2
S

)
+ 2εαβBS

12∂αX1
S∂βX2

S, (69)

with gS
11 = g22

M , gS
22 = g11

M , BS
12 = − B

M . The background matrix, then, is inverted:

ES =
(

gS
11 BS

12

−BS
12 gS

22

)
= 1

M

(
g22 −B
B g11

)
= 1

E
. (70)

From equations (66) and (68), we find the relation between primal and dual coordinates

∂αX1
S = (

g11ε
ρ
α∂ρX

1 + B∂αX2) , ∂αX2
S = (

g22ε
ρ
α∂ρX

2 − B∂αX1) . (71)

Using these relations in the primal boundary conditions (46), we find the dual boundary
conditions

Ẋ
1
S = g11X

′1 + BẊ2 = 0, Ẋ
2
S = g22X

′2 − BẊ1 = 0. (72)

Thus both dual coordinates are of the Dirichlet type. Consequently, the dual system is a
D0-brane and we have commutativity!

Using the dual zweibein

e∗
S =

√
M

(
1√
g22

0

0 1√
g11

)
(73)

10
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and equations (70) and (71), we find the matrix US
X1X2 that transforms the momentum vector

PS =

⎛
⎜⎜⎝

P 1
SL

P 2
SL

P 1
SR

P 2
SR

⎞
⎟⎟⎠ = 1

M

⎛
⎜⎜⎝

√
g11g22 B 0 0
−B √

g11g22 0 0
0 0 −√

g11g22 B
0 0 −B −√

g11g22

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P 1
L

P 2
L

P 1
R

P 2
R

⎞
⎟⎟⎠ = US

X1X2P

(74)

which is the same found in section 3 for the zero-mode momentum vector.

4.2.2. Alternative transformation. In this case, the dual coordinates Xi
A are introduced by

Ẋi
A(τ, σ ) := gijX

′j (τ, σ ), X′i
A(τ, σ ) := gij Ẋ

j (τ, σ ), (75)

where gij is the primal diagonal metric. The dual boundary conditions,

1

g11
X′1

A − 1

B
Ẋ2

A = 0,
1

g22
X′2

A +
1

B
Ẋ1

A = 0, (76)

have the same mixed form of those of the primal system. This shows that the dual system is a
D2-brane with a nonzero Kalb–Ramond field that has non-commutative behavior. From these
BCs, we figure out the dual background

gA = g−1, BA =
(

0 − 1
B

1
B 0

)
. (77)

Note that the zweibein has inverted, too. We proceed to the transformation of the momenta:

PA =

⎛
⎜⎜⎜⎜⎝

P 1
AL

P 2
AL

P 1
AR

P 2
AR

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

P 1
L

P 2
L

P 1
R

P 2
R

⎞
⎟⎟⎟⎟⎠ =: UA

X1X2P. (78)

This transformation is clearly a symmetry of the Hamiltonian, and it also preserves
P 2

L−P 2
R . This time, though, the momentum vector transformation UA

X1X2 is not the same as that
obtained using T-duality

(
US

X1X2

)
. Moreover, the winding–momentum number transformation

T A
X1X2 is also different,

T A
X1X2 =

⎛
⎜⎜⎝

0 − 1
B 0 0

1
B 0 0 0
1 0 0 −B
0 1 B 0

⎞
⎟⎟⎠ �= T S

X1X2 = TX1X2 , (79)

where TX1X2 is as defined in equation (38). Again we note that the matrix T A
X1X2 applied to

closed strings leads in general to non-integer momentum and winding numbers. So, as already
pointed out in the case of transforming only one coordinate, the alternative transformation is
not a T-duality (the B = 1 case would be an exception).

Regarding commutativity of position operators, while the dual system of the Xi
S

coordinates and ES background is a commutative one, the dual system of the Xi
A coordinates

is non-commutative. Indeed, according to (14) and (77), we have

[
X1

A(τ, 0),X2
A(τ, 0)

] = − BA
12

MA
=

1
B
M

g11g22B2

= Bg11g22

M
= −g11g22[X1(τ, 0),X2(τ, 0)]. (80)

That means that the dual commutator is proportional to the primal one.
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5. Conclusions

We have studied the effect of T-duality in non-commutativity for open string coordinates in
the presence of a Kalb–Ramond antisymmetric background. We discussed the fact that the
transformation of the background (metric and Kalb–Ramond field) concerns only the behavior
of the target space. The transformation of a particular system living in the target space
is defined by the transformation of the boundary conditions. We considered as our primal
system a D2-brane wrapped on a T 2 torus (target space). This system has mixed boundary
conditions and is a two-dimensional non-commutative space.

Considering the T-dualization of just one coordinate, we found a commutative dual
system. This can be understood from the fact that T-duality of one coordinate transforms
the original D2-brane into a (non-localized) tilted D1-brane. On the other hand, T-duality
transforms the target space into another T 2 torus without a Kalb–Ramond field. The alternative
transformation applied to one coordinate leads to an equivalent commutative system.

When T-dualizing both coordinates, we found a commutative system since the dual
boundary conditions are all of the Dirichlet type, indicating that the dual system is a (non-
localized) D0-brane. This is a non-trivial result since the dual target space is a T 2 torus with
a non-vanishing Kalb–Ramond field. It is important to remark that a different system, like a
D2-brane, living in this dual target space will be non-commutative. The commutative/non-
commutative character of open strings depends not only on the target space but also on the
boundary conditions, which define a particular D-brane system. Even in the primal target
space, the presence of a Kalb–Ramond field does not rule out the possibility of a commutative
system, like a D0-brane.

On the other hand, the alternative transformation applied to two coordinates leads to a
dual system with mixed boundary conditions, corresponding to a non-commutative D2-brane
which is not equivalent to the D0-system obtained by T-duality. We remark that the alternative
transformation is not a T-duality since it does not preserve the condition that, for closed strings,
winding and momentum numbers (in the compact directions) are integer numbers.

It may be surprising that non-commutativity is lost for some T-duality transformations,
but we must remember that the T-duality transformation acts only on the compact coordinates
Xi, i = 1, 2. The non-compact coordinates XI , I = 3, 4, . . . , have their commutation
relations unchanged. Our non-commutative parameter lives on a torus. This situation differs
from the case of non-commutative quantum field theories formulated in non-compact spaces
where the non-commutativity parameter is taken as a physical quantity. Since we expect T-
duality transformation to be a symmetry of open–closed string theory, the non-commutativity
parameter of the compact dimensions should not be a physical observable.
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